
Journal of Applied Mechanics and Technical Physics, Vol. 49, No. 4, pp. 655–665, 2008

FLOW OF ELECTROLYTES IN A POROUS MEDIUM

UDC 532.546; 533.15V. V. Shelukhin1 and Yu. Amirat2

A two-scale model of ion transfer in a porous medium is obtained for one-dimensional horizontal flows
under the action of a pressure gradient and an external electric field by the method of homogenization.
Steady equations of electroosmotic flows in flat horizontal nano-sized slits separated by thin dielectric
partitions are averaged over a small-scale variable. The resultant macroequations include Poisson’s
equation for the vertical component of the electric field and Onsager’s relations between flows and
forces. The total horizontal flow rate of the fluid is found to depend linearly on the pressure gradient
and external electric field, and the coefficients in this linear relation are calculated with the use of
microequations.

Key words: filtration of electrolytes, two-scale expansions, homogenization, nanoscale, nonlocal
Poisson–Boltzmann equation.

Introduction. The electroosmosis phenomenon discovered by Reuss [1] implies that the levels of water in
a U-shaped tube with sand on the bottom become different if differently charged electrodes are placed into the
tube (Fig. 1). In 1859, Quincke discovered the opposite effect: a filtration flow through a membrane induces a
potential difference on the latter [1]. An explanation of these effects was found within the framework of the theory
of an electrical double layer arising on the interface of solid mineral particles and a pore-filling fluid [2]. Because of
chemically non-balanced bonds, the particle surface is not electrically neutral, while the usual water is an electrolyte.
Therefore, there arises an electric potential on the interface, and the charges become separated, thus, forming an
electrical double layer. The inner layer (Stern layer) consists of ions retained by electrostatic forces and van der
Waals forces. The outer layer (Gouy layer) is formed by ions trapped by electric forces and “disorder” thermal
forces.

The electrokinetic phenomena are caused by the presence of this electrical double layer. An external elec-
tric field initiates relative motion of strongly connected ions of the inner layer and mobile ions of the outer layer
(electrophoresis and electroosmosis). The neutral bulk fluid is also set into motion because of its viscosity. Simul-
taneously, an electric potential may arise owing to the relative motion of cations and anions under the action of a
pressure gradient.

It is necessary to study the electroosmosis phenomenon to solve problems of separation of constituents in
nanochannels [3]. In contrast to microchannel flows, the transverse electric field is extremely important for flows in
nanochannels.

Ion-transport models are based on the Navier–Stokes equations for a bulk fluid, Poisson’s equation for the
electric field potential, and various generalizations of the Nernst law for the ion distribution [4]. Being extremely
complicated, such systems can be resolved only numerically; hence, most activities involve quantification of electrical
phenomena.

An asymptotic approach for a theoretical analysis of electroosmosis equations is developed in the present
paper. For this purpose, we study horizontal flows through a vertical membrane, which is treated as a system of N
thin flat horizontal fluid layers of identical thickness hf separated by solid layers of identical thickness hs. The flows
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Fig. 1. Schematic of electroosmosis.

are caused by a horizontal pressure gradient and by an applied external horizontal electric field; the electroosmosis
forces are caused by an induced vertical electric field. The membrane thickness L = N(hf + hs) (N is the number
of fluid layers) is assumed to be fixed, and the ratio δ = (hf + hs)/L is assumed to be a small parameter.

Within the theory of the electrical double layer, the particle–fluid interface is not purely mathematical;
instead, it is a certain transitional layer, and the issue of the boundary conditions has not been adequately studied
yet [5]. The potential of the surface near the particle, where the fluid velocity equals zero, is called the ζ-potential.
The Stern layer is motionless and is related to the solid particle, which is assumed to be electrically neutral.
Therefore, Poisson’s equation transforms to the Laplace equation in the solid layer. If there is no concentration of
free charges on the surface of the ζ-potential, where the no-slip condition for velocity is satisfied, then the condition
of continuity of the normal component D · n of the induction vector D = εE is satisfied on this surface under
the assumption that the dielectric permittivity of the solid layer differs from that of the fluid layer. Hence, the
condition of continuity of D ·n rather than the value of the potential is imposed on the interface between the solid
and fluid layers.

The asymptotic approach considered is a method of homogenization [6, 7] based on two-scale asymptotic
expansions for equations that describe the ion transport near the solid particles. Homogenization yields micro- and
macroequations, and the microequations serve to determine constants for macroequations including the generalized
Darcy law for a medium with a porosity Φ = hf/(hf + hs).

The horizontal isolated fluid layers interact due to the vertical component of the electric field. The macro-
scopic horizontal flow V , however, is independent of the vertical variable.

The macroscopic electric current J and the flow V satisfy the generalized Darcy law

V = −λ11px − λ12ψx, J = −λ21px − λ22ψx, (1)

where px is the horizontal pressure gradient and ψx is the horizontal gradient of the electric potential. In thermo-
dynamics of irreversible processes, system (1) relating flows and forces is called the Onsager reciprocal relations [8].
It is possible to calculate the mobility coefficients λij and to prove the Onsager relation of symmetry λ12 = λ21. For
flows in thin capillaries, the kinetic coefficient λ12 was first estimated by Boltzmann and Smoluchowski [1]. The full
macroscopic system consists of the Darcy law (1) and Poisson’s equation for the macroscopic electric potential. The
asymptotic analysis is performed in the present paper for a small (as compared with δ) coefficient of ion diffusion.

1. Governing Equations. A real aqueous solution consists of a solvent (water) and ions of various
salts (species or components) dissolved in the solvent. A solution may contain several cation and anion species,
depending on the valency of this or that ion. In the present paper, we consider a binary electrolyte, i.e., a solution
(not necessarily an aqueous solution) containing one type of cations and one type of anions. For fairly well diluted
mixtures, the exchange of momentum between the solvent and the dissolved components is described by the Stokes
law [9]

ρ
∂v

∂t
= −∇p+ μΔv + E

∑
i=±

qiρi

mi
+ ρg. (2)
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Here ρ is the density of the medium, v is the velocity of the mixture, μ is the viscosity, mi is the molecular weight
of the ion, p is the pressure, ρ+ and ρ− are the mass densities of positive and negative ions, qi = zie is the ion
charge, E is the electric field, g is the acceleration due to gravity, e is an elementary charge, zi is the ion valency,
and ci = ρi/mi is the concentration, i.e., the number of ions in a unit volume.

The equilibrium ion distribution obeys the Nernst law [1]

0 = −ρiqi
mi

dψ − kT

mi
dρi, E = −∇ψ, (3)

where ψ is the potential of the field E, k is the Boltzmann constant, and T is the temperature. Equality (3) means
that the contacting phases, being in equilibrium, have identical chemical potentials. In the dynamic case, Eq. (3)
is generalized to the force-balance equation as follows [9]:

ρi
∂vi

∂t
= μiΔvi − αi∇p+

ρiqi
mi

E − kT

mi
∇ρi +

γiρi

mi
(v − vi) + ρig. (4)

Here the resistance coefficient γi is defined by the Stokes–Einstein–Sutherland [10]

γi = kT/Di, (5)

vi and μi are the velocity and viscosity of the fluid component consisting of ions of the ith type, αi is the bulk
concentration (α1 +α2 ≤ 1), the fifth term in the right side of equality (4) is a diffusion term, and Di is the diffusion
coefficient. Because of the low phase concentrations α1 and α2, the ion viscosity μi and also the terms αi∇p can
be neglected.

Poisson’s equation of charge conservation has the form

div D = 4π
∑
±

ρiqi
mi

, D = εfE, E = −∇ψ, (6)

where D is the electric induction vector and εf is the dielectric permittivity of the electrolyte. As the mixture is
assumed to be incompressible, the laws of conservation of mass of the mixture and individual components are set
as follows:

div v = 0, ρ = const,
∂ρi

∂t
+ div (ρivi) = 0. (7)

The charges are not concentrated inside the solid dielectric; hence, the following equations are satisfied in the solid
phase:

div D = 0, D = εsE, E = −∇ψ
(εs is the dielectric permittivity of the dielectric material).

2. One-Dimensional Equations. This research was motivated by the problem of an electrolyte flow
through a membrane of finite thickness l (Fig. 2) where the input pressure (on the left) p− is greater than the
output pressure p+. In this case, the flow is mainly determined by the pressure gradient (p+ − p−)/l ≡ −α. The
flow may also be induced by the gradient of the potential of the external electric field E = −(ψ+ − ψ−)/l ≡ −β.

Let ρ−i be the ion density defined at the output. As a model problem, we consider a steady flow of the
electrolyte in an infinite horizontal layer of thickness L consisting of N horizontal slits an < z < bn of identical
thickness hf separated by layers bn < z < an+1 of a solid dielectric of identical thickness hs (z is the vertical
coordinate). At the central point dn of the fluid domain an < z < bn, the ion densities ρi acquire prescribed
values ρ−i , which corresponds to imposing input concentrations in the case of a finite-thickness membrane.

Let Qf and Qs be the fluid and solid domains, respectively:

Qf = {x, z: −∞ < x < +∞, z ∈ Ωf}, Qs = {x, z: −∞ < x < +∞, z ∈ Ωs},

Ωf =
N−1⋃
n=0

{an < z < bn}, Ωs =
N−1⋃
n=0

{bn < z < an+1}, Ω = Ωf ∪ Ωs ≡ {0 < z < L},

an = n(hf + hs), bn = an + hf , dn = an + hf/2.
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Fig. 2. Flow through the membrane: 1) solid layer; 2) fluid layer.

In the fluid domain Ωf , the solution of Eqs. (2)–(7) is sought in the form

v = (v(z), 0, 0), vi = (vi(z), 0, 0), ρi = ρi(z), p = αx+ P (z), ψ = βx+ ϕ(z)

(α = const; β = const). In this case, system (2)–(7) becomes

μvzz − α− β
∑
±
ciqi = 0, ci =

ρi

mi
; (8)

−Pz − ϕz

∑
±
ciqi − ρg = 0; (9)

−βciqi +
kT ci
Di

(v − vi) = 0; (10)

−ciqiϕz − kT ciz − gcimi = 0; (11)

εlϕzz = −4π
∑
±
ciqi. (12)

In the solid domain Ωs, the potential ϕ satisfies the equation

εsϕzz = 0. (13)

The conditions of continuity of the potential ϕ and induction D have the form

[ϕ] = [εϕz] = 0 for z = an and z = bn, ci = c−i for z = dn, (14)

where n = 1, . . . , N−1; the expression [ϕ]
∣∣∣
z=z0

indicates a jump of the discontinuous function ϕ at the discontinuity

point z0:

[ϕ]
∣∣∣
z=z0

= lim
σ→0

(ϕ(z0 + σ) − ϕ(z0 − σ)).

The no-slip conditions can be written as

v = 0 for z = an and z = bn (n = 0, . . . , N). (15)

The external values of the potential ϕ are assumed to be given:

ϕ
∣∣∣
z=0

= ζ0, ϕ
∣∣∣
z=L

= ζL. (16)
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Thus, one-dimensional flows are described by Eqs. (8)–(13) with the boundary conditions (14)–(16). Let us
give some consequences of these equations.

We introduce a discontinuous function of dielectric permittivity

ε =

{
εf , z ∈ Ωf ,

εs, z ∈ Ωs,

which is assumed to be periodically extended for all values of z.
To eliminate the concentrations ci, we write Eq. (11) in the form

d

dz
(qiϕ+ kT ln ci +migz) = 0.

Integrating this equation from the point dn to the point z ∈ (an, bn), we obtain

ci = c−i exp
{ qi
kT

[ϕ(dn) − ϕ(z)] +
gmi

kT
(dn − z)

}
. (17)

Thus, the potential ϕ on the interval (an, bn) is the solution of the Poisson–Boltzmann equation [1]

εfϕzz = −4π
∑
±
c−i qi exp

{ qi
kT

[ϕ(dn) − ϕ(z)] +
gmi

kT
(dn − z)

}
. (18)

We introduce a function [z]e, which takes the value of the integer part of the number z. Then, for an < z <

an+1, the functions

Ha(z) = h
[ z
h

]
e
, Hd(z) =

hf

2
+ h

[ z
h

]
e
, Hb(z) = hf + h

[ z
h

]
e
, h ≡ hf + hs (19)

take constant values an, dn, and bn. To determine ϕ over the entire interval 0 < z < L, we have to solve the
equation

(εϕz)z = −4πχ(z)
∑
±
c−i qi exp

{ qi
kT

[ϕ(Hd(z)) − ϕ(z)] +
gmi

kT
(Hd(z) − z)

}

with the boundary conditions (14) and (16) (χ is the characteristic function of the fluid domain Ωf ).
3. Transition to Dimensionless Quantities and Comparison of Parameters. We introduce a

periodic function ξd = Hd(z)− z, which acquires the value ξd = hf/2− z on the periodicity interval 0 < z < h. We
seek for an asymptotic solution of problem (8)–(16), assuming that the parameter

h/L = 1/N = δ

is small (N is a certain natural number). Within the framework of the homogenization method, the interval
Ω = {0 < z < L} is fixed, and the parameter δ changes in the interval (0, 1). In this case, we obtain

h(δ) = δL, hf = δh̄f , hs = δh̄s, h̄f + h̄s = L, Φ = h̄f/L

(Φ is the porosity).
In addition to the slow variable z ∈ Ω, we introduce a fast variable y = z/(δL). For small values of δ,

the periodic functions ε(z) and χ(z) rapidly oscillate and admit presentations in the form of functions of the fast
variable

ε(z) = ε̃
( z

δL

)
, χ(z) = χ̃

( z

δL

)
,

where

ε̃(y) =

{
εf , 0 < y < Φ,

εs, Φ < y < 1,
χ̃(y) =

{
1, 0 < y < Φ,

0, Φ < y < 1

are periodic functions with a period equal to unity. The functions

ξ̃a(y) = −Ly, ξ̃d(y) = L(Φ/2 − y), ξ̃b(y) = L(Φ − y), 0 < y < 1

are assumed to be extended periodically for all values y ∈ R. The functions Ha(z), Hd(z), and Hb(z) introduced in
(19) can be written as
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Ha(z) = z + δξ̃a

( z

δL

)
, Hd(z) = z + δξ̃d

( z

δL

)
, Hb(z) = z + δξ̃b

( z

δL

)
.

In the notation used, the function ϕ(z) on the interval 0 < z < L is the solution of the problem(
ε̃
( z

δL

)
ϕz

)
z

= f(ϕ) (20)

with the boundary conditions (16), where

f = −4πχ̃
( z

δL

)∑
±
c−i qi exp

{ qi
kT

[
ϕ
(
z + δξ̃d

( z

δL

))
− ϕ(z)

]
+
δgmi

kT
ξ̃d

( z

δL

)}
.

As the fluid domain Ωf depends on δ, we write Ωδ
f instead of Ωf and Ωδ

s instead of Ωs. It follows from Eqs. (8)
and (12) that the bulk velocity satisfies the equation

z ∈ Ωδ
f : μvzz + (4π)−1βεfϕzz = α, z ∈ ∂Ωδ

f : v = 0. (21)

If the values of ci are set by formulas (17), then the ion velocity is found as the solution of the problem

z ∈ Ωδ
f : − βciqi + (kT ci/Di)(v − vi) = 0. (22)

Using the symbol f̄ for the characteristic value of the dimensional quantity f and the symbol f ′ for the
dimensionless value of this quantity, we pass to the dimensionless variables f = f̄f ′. We use the following notations:

z = Lz′, x = Lx′, ci = c̄c′i, qi = q̄q′i, v = v̄v′, vi = v̄v′i, Di = D̄D′
i,

α = p̄α′/L ≡ p̄p′x′/L, β = ϕ̄β′/L ≡ ϕ̄ψ′
x′/L, Hd(z) = LH ′

d(z
′).

The quantity

ld = {εfkT/(2c̄q̄2)}1/2 (23)

has the dimension of length and is known as the Debye length. In dimensionless variables, Eqs. (8)–(12) in the
fluid domain take the form (μv̄/L2

p̄/L

)
4
v′z′z′ +

β′

π

( l2d
L2

)
2

( q̄ϕ̄
kT

)
1

( q̄ϕ̄c̄
p̄

)
3
ϕ′

z′z′ = α′,

−β′q′iD
′
i

( q̄ϕ̄
kT

)
1
+

( v̄L
D̄

)
5
(v′ − v′i) = 0,

( l2d
L2

)
2

( q̄ϕ̄
kT

)
1
ϕ′

z′z′ = −2π
∑
±
c′iq

′
i exp

{
q′i

( q̄ϕ̄
kT

)
1

[
ϕ′(H ′

d(z
′)) − ϕ′(z′)

]
+

(gmiL

kT

)
7
(H ′

d(z
′) − z′)

}
.

In the solid domain, Eq. (13) is equivalent to the equation (εs)6ϕ′
z′z′ = 0.

Assuming that the dimensionless parameters ( · )i obey the constraints

( · )i = δni , i = 1, . . . , 6, ( · )7 = 0,

we come to a hierarchy of the problems. In this study, we consider only the case where all powers of ni are equal
to zero, i.e., ( · )i = O(1). The equality ( · )1 = O(1) means that the electroosmotic forces and the thermal forces
are quantities of the same order. Note that the relation ( · )1 = O(1) is valid, for instance, for an aqueous solution
of a symmetric electrolyte (i.e., for z+ = z−, c−+ = c−−) at T = 298 K, z = 1, and the value of the ζ-potential
equal to 25 mV [3]. If the parameter ( · )1 is not small, the Debye–Hückel linearization of the Poisson–Boltzmann
equation is inapplicable. For ( · )1 = O(1), the Debye length ld can be large, as compared with the electrical double
layer; in this case, the double layers may overlap. Indeed, it is commonly assumed that ld = 9.6/(z

√
c̄ ) [3]. For

the above-mentioned electrolyte with a molar concentration of counter-ions c̄ = 0.01 mmole, the Debye length
is ld = 100 nm, whereas the characteristic thickness of the electrical double layer is only several nanometers [3],
and the pore size in nanocapillary membranes is 15 nm [11]. For such cases, the assumption ( · )2 = O(1) is fairly
natural. The hypothesis ( · )3 = O(1) means that the horizontal pressure gradient and the horizontal electric field are
commensurable in the order of magnitude. The relation ( · )4 = O(1) is satisfied if the viscous forces are comparable
with the pressure gradient applied. As the dimensionless parameter ( · )5 is the Peclet number (Pe), the equality
Pe = O(1) means that convection and diffusion are quantities of the same order. If the electrolyte concentration c̄
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in water is small, then the hypothesis ( · )6 = O(1), which is equivalent to the equality εs/εf = O(1), is valid. As
the mass mi can be neglected, in what follows we assume that ( · )7 = 0.

The Debye–Hückel approach to the analysis of the Poisson–Boltzmann equation (18) for the half-plane z > 0
with the boundary conditions ϕ → 0 and ϕz → 0 as z → ∞ and with the condition ϕ = ζ0 at z = 0 implies the
following. For a symmetric electrolyte, the linearized equation (18) in the SI system of units (where 4π has to be
replaced by unity) acquires the form l2dϕzz = −ϕ, because the nonlocal term ϕ(d) disappears as d → ∞. In this
case, the solution is given by the formula ϕ(z) = ζ0 e−z/ld , which implies that the Debye length is determined by
Eq. (23).

4. Asymptotic Analysis of the Poisson–Boltzmann Equation. We pass back to dimensional variables.
Using the method of two-scale expansions [6, 7], we seek for the solution of Eq. (20) in the form of a series

ϕ(z) =
∞∑
0

δkϕk(z, y)
∣∣∣
y=z/(δL)

, (24)

where the functions ϕk(z, y) for each z ∈ Ω are periodic in the y direction with a period equal to unity. We introduce
the flux

F (z) = ε̃
( z

δL

) d

dz
ϕ(z),

d

dz
F = f(ϕ) (25)

and present it as a series

F (z) =
∞∑
0

δkF k(z, y)
∣∣∣
y=z/(δL)

(26)

[F k(z, y) are functions periodic in the y directions for all z ∈ Ω].
Using the formula

d

dz
ϕk

(
z,

z

δL

)
= ϕk

z

(
z,

z

δL

)
+

1
δL

ϕk
y

(
z,

z

δL

)
and substituting series (24) and (26) into the first equality of (25), we obtain

∞∑
−1

δk( · )k = 0.

Thus, for all k = −1, 0, 1, . . . , we have ( · )k = 0. In particular, three first equalities can be written as

ϕ0
y(z, y) = 0, F 0(z, y) = ε̃(y)(ϕ0

z(z, y) + ϕ1
y(z, y)/L); (27)

F 1(z, y) = ε̃(y)(ϕ1
z(z, y) + ϕ2

y(z, y)/L). (28)

Substituting series (24) and (26) into the second equality of (25) and retaining only the powers δ−1 and δ0,
we obtain

∂

∂y
{ε̃(y)[ϕ0

z(z, y) + L−1ϕ1
y(z, y)]} = 0; (29)

∂

∂z
{ε̃(y)[ϕ0

z(z, y) + L−1ϕ1
y(z, y)]} + L−1 ∂

∂y
{ε̃(y)[ϕ1

z(z, y) + L−1ϕ2
y(z, y)]} = −4πχ(y)

∑
±
c−i qi. (30)

Equations (29) and (30) allow the functions ϕ0(z, y), ϕ1(z, y), and ϕ2(z, y) to be uniquely determined.
Indeed, it follows from the first relation of system (27) that the function ϕ0(z, y) is independent of the variable y.
For a given function ϕ0(z), Eq. (29) for ϕ1(z, y) can be solved by the method of separation of variables under
the assumption that there exists a certain function w1(y), such that ϕ1(z, y) = ϕ0

z(z)w1(y). Substituting this
presentation into Eq. (29), we obtain w1(y), which is a periodic solution of the problem

d

dy

(
ε̃(y)

(
1 +

1
L

dw1

dy

))
= 0,

1∫
0

w1(y) dy = 0. (31)
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Obviously, w1 is found uniquely, and

ε̃(y)
(
1 +

1
L

dw1

dy

)
= εh(Φ) = const, εh(Φ) =

( 1∫
0

dy

ε̃(y)

)−1

=
1

Φ/εf + (1 − Φ)/εs
. (32)

Integrating equality (30) with respect to y, we obtain an equation for ϕ0(z):

εh(Φ)ϕ0
zz = −4πΦ

∑
±
c−i qi, ϕ0(0) = ζ0, ϕ0(L) = ζL. (33)

For known functions ϕ0(z) and ϕ1(z, y) = ϕ0
z(z)w1(y), Eq. (30) for ϕ2(z, y) can also be solved by the method

of separation of variables under the assumption that there exists a function w2(y), such that ϕ2(z, y) = ϕ0
zz(z)w2(y).

Substituting this presentation into Eq. (30), we obtain w2(y), which is a periodic solution of the equation

εhϕ
0
zz + L−1ϕ0

zz

d

dy

{
ε̃(y)

[
w1(y) + L−1 d

dy
w2(y)

]}
= −4πχ(y)

∑
±
c−i qi. (34)

For

1∫
0

w2 dy = 0, Eq. (34) has a unique solution.

Note that the presentation for the macroscopic parameter εh coincides with the known Maxwell formula for
a mixture of two dielectrics [12].

5. Asymptotic Analysis of Velocity. Integrating Eq. (21), we obtain the following formula for velocity
in each fluid domain an < z < bn:

μv(z) =
1

bn − an

z∫
an

dr

bn∫
an

ds

r∫
s

G(λ) dλ, G = α− βεf

4π
ϕzz . (35)

We extent the function v by zero to the solid domain Ωδ
s, using v̂(z) to denote this extension. It follows from

Eq. (35) that

μv̂(z) =
χ̃(z/(δL))

δh̄l

z∫
z+δξ̃a(z/(δL))

dr

z+δξ̃b(z/(δL))∫
z+δξ̃a(z/(δL))

ds

r∫
s

G(λ) dλ, G = α− βεf

4π
ϕzz (36)

for all z ∈ Ω. Taking into account that the function ϕ(z) is presented as series (24), we seek for v̂(z) in the form

v̂(z) =
∞∑
2

δkvk−2(z, y)
∣∣∣
y=z/(δL)

, (37)

where the functions vk(z, y) for 0 < y < Φ are periodic with respect to y and vk(z, y) = 0. After simple calculations,
we have

z∫
z+δξ̃a(z/(δL))

dr

z+δξ̃b(z/(δL))∫
z+δξ̃a(z/(δL))

ds

r∫
s

αdλ =
δ3αh̄l

2
ξ̃a

( z

δL

)
ξ̃b

( z

δL

)
.

Using the properties of the functions ϕ0
z(z, y), ϕ

1
z(z, y), and ϕ2

z(z, y), we obtain

ϕ(λ) = ϕ0(z) + δϕ0
z(z)w1(y) + δ2ϕ0

zz(z)w2(y) + . . . , z = λ, y = λ/(δL);

ϕ′′(λ) =
{ϕ0

z(z)w′′
1 (y)

δL2
+ ϕ0

zz

(
1 +

2w′
1(y)
L

+
w′′

2 (y)
L2

)}∣∣∣
z=λ, y=λ/(δL)

+ δ( · ). (38)

By virtue of the term χ̃ in the right side of Eq. (36), we can assume that z ∈ (Ha(z), Hb(z)). Then, the variables r
and s also vary within this interval. As λ is between r and s and, hence,

0 <
λ

δL
−

[ λ
δL

]
e
< Φ,
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the derivatives w′′
1 (λ) and w′′

2 (λ) in Eq. (38) are meaningful. In addition, it follows from Eqs. (30) and (32) that
the functions w1(y) and w2(y) for 0 < y < Φ satisfy the equalities

w′′
1 (y) = 0, ϕ0

zzεf

(
1 +

2
L
w′

1(y) +
1
L2

w′′
2 (y)

)
= −4π

∑
±
c−i qi.

Thus, we obtain

ϕ′′(λ) = −4π
εf

∑
±
c−i qi + δ( · ). (39)

Substituting Eqs. (37) and (39) into Eq. (36) and considering only the power δ2, we can show that the
function v0(z, y) does not depend on the variable z and has the form

μv0(y) =
1
2
χ̃(y)ξ̃a(y)ξ̃b(y)

(
α+ β

∑
±
c−i qi

)
. (40)

Integrating equality (40) over the periodicity cell, we obtain a macroscopic equation for velocity

V ≡
1∫

0

v0(y) dy = −λ11α− λ12β, (41)

where the hydrodynamic and electrochemical mobilities are defined by the formulas

λ11 =
L2Φ3

12μ
, λ12 =

L2Φ3

12μ

∑
±
c−i qi.

6. Asymptotic Analysis of Ion Velocity. As Pe = O(1) and v = O(δ2), we assume that the diffusion
coefficients of the ion components are small: Di = δ2D̃i. Denoting the zero extension of the function vi to the solid
domain Ωδ

s by v̂i, we use Eq. (22) to obtain

v̂i(z) = v̂(z) − βqiδ
2D̃iχ(z)/(kT ).

Presenting v̂i in the form

v̂i(z) =
∞∑
2

δkvk−2
i (z, y)

∣∣∣
y=z/(δL)

,

we obtain

v0
i (z, y) = v0(y) − βqiD̃iχ(y)/(kT ). (42)

We introduce the total electric current

j =
∑
±
ciqiv̂i, j(z) =

∞∑
0

δkjk(z, y)
∣∣∣
y=z/(δL)

.

As it follows from Eq. (42) that

j0(z, y) =
∑
±
c−i qiv

0
i (y), (43)

the macroscopic electric current is

J ≡
1∫

0

j0(y)dy = −λ21α− λ22β, (44)

where

λ21 =
L2Φ3

12μ

∑
±
c−i qi, λ22 =

L2Φ3

12μ

(∑
±
c−i qi

)2

+
Φ
kT

∑
±
q2i D̃ic

−
i .
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7. Macroscopic Electroosmotic Mobilities. The macroscopic laws of electroosmosis

V = −λ11px − λ12ψx, J = −λ21px − λ22ψx (45)

satisfy an important condition: the mobilities λij obey the Onsager condition λ12 = λ21 known in nonequilibrium
thermodynamics.

Equations (45) explain the effect of electroosmosis (see Fig. 1) and allow the difference in the water levels in
the tubes to be calculated. Indeed, the total velocity in the equilibrium state equals zero, and the pressure difference
can be calculated by the equality

px = −(λ12/λ11)ψx.

Equations (45) also allow us to understand why the filtration flow through the membrane (see Fig. 2) induces
an electric field. In a neutral electrolyte, we have J = 0; therefore, the second equation of (45) implies that the
pressure gradient px induces an electric field such that

ψx = −(λ21/λ22)px. (46)

The induced electric field reduces hydrodynamic permittivity. With allowance for (46), the first equation of system
(45) implies that

px = −λefψx, λef = λ11 − λ2
12/λ22.

Though the ζ-potentials ζ0 and ζL determine the macroscopic electric field, the mobilities λij are independent
of these potentials. The results obtained can be formulated as follows. On the entire interval 0 < z < L, the
electroosmotic flows are described by global variables, including the macroscopic flow V , macroscopic electric
current J , and macroscopic potential ϕ0. The local variables defined on the periodicity cell 0 < y < 1 include the
microscopic flow v0(y), microscopic velocities of ions v0

+(y) and v0
−(y), and microscopic potentials w1(y) and w2(y).

The macroequations are Eqs. (45) and (33), whereas Eqs. (31), (34), (40), and (42) form a system of microequations.
The global and local variables are related by equalities (41), (43), and (44). An important role of microequations
in calculating the macroscopic coefficients λij should also be noted.

By virtue of the asymptotic expansions

v̂(z) = δ2v0(y)
∣∣∣
y=z/(δL)

+ o(δ2), v̂i(z) = δ2v0
i (y)

∣∣∣
y=z/(δL)

+ o(δ2),

ϕ(z) = ϕ0(z) + δϕ0
z(z)w1(y)

∣∣∣
y=z/(δL)

+ δ2ϕ0
zz(z)w2(y)

∣∣∣
y=z/(δL)

+ o(δ2)

[v̂(z), v̂i(z), and ϕ(z) are the solutions of Eqs. (8)–(13); the sign hat means to zero extension to the solid domain),
the two-scale model considered is an effective approximate model for exact nonlinear equations (8)–(13).

Conclusions. A two-scale one-dimensional model is proposed for osmotic nanoflows in thin horizontal slits
under the action of a pressure gradient and an external electric field. The model is obtained by using two scales
and applying the method of homogenization to the Stokes equation for the flow of ion components and the Poisson–
Boltzmann equation for the induced electric field. Introducing a fast variable and using two-scale asymptotic
expansions, we managed to derive macroequations with the coefficients calculated on the basis of microequations.
The averaged model is the generalization of the Darcy equation and the Boltzmann–Smoluchowski equation. In
this model, the mean hydrodynamic flow and the mean electric current depend linearly on the pressure gradient
and external electric field, and the coefficients obey the Onsager conditions of symmetry.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00131), by the
Program No. 14.4.2 of the Russian Academy of Sciences, and by the CNRS Grant No. UMR 6620 of the Laboratory
of Applied Mathematics of the Blaise Pascal University (France).

664



REFERENCES

1. E. D. Shchukin, A. V. Pertsev, and E. A. Amelina, Colloidal Chemistry [in Russian], Vysshaya Shkola, Moscow
(1992).

2. B. V. Deryagin (ed.), Surface Forces and Boundary Layers in Fluids [in Russian], Nauka, Moscow (1983).
3. B. J. Kirby and E. F. Hasselbrink (Jr.), “Zeta potential of microfluidic substrates. 1. Theory, experimental

techniques and effect on separations,” Electrophoresis, 25, 187–202 (2004).
4. I. Rubinstein, Electrodiffusion of Ions, SIAM, Philadelhia (1990).
5. G. Reiter, A. L. Demirel, and S. Granick, “From static to kinetic friction in confined liquid films,” Science,

263, 1741–1744 (1994).
6. P. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media [in Russian], Nauka, Moscow

(1984).
7. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer, Heidelberg (1980).
8. S. R. de Groot and P. G. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).
9. K. P. Tikhomolova, Electroosmosis [in Russian], Khimiya, Leningrad (1989).

10. R. F. Probstein, Physicochemical Hydrodynamics, Wiley, New York (1994).
11. A. N. Chatterjee, D. M. Cannon, E. N. Gatimu, et al., “Modelling and simulation of ionic currents in three-

dimensional microfluidic devices with nanofluidic interconnects,” J. Nanopart. Res., 7, 507–516 (2005).
12. W. B. Brown, Dielectrics, Springer-Verlag (1956).

665



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


